STI Turbocharge NLP Inference at the Edge via Elastic Pipelining

Intensive Reading Author Info Homepage - Liwei Guo / Assistant Professor: a tenure-track Assistant Professor at University of UESTC. Background Challenges Cold start of NLP models in mobile devices NLP inference stresses mobile devices on two aspects Latency: impromptu user engagements Model Size Existing Paradigms: Hold in memory Too large memory footprint, likely to be victims of mobile memory management Load before execute Slow start, waiting for I/O, computation resources stall Pipeline load/execution Low arithmetic intensity in Transformer’s attention modules The pipeline is filled with bubbles and the computation stalls most of the time at each model layer Insights A model can be re-engineered from a monolithic block into a collection of resource-elastic “shards” by uniquely combining vertical partitioning with fine-grained, per-shard quantization. This transforms the I/O time of each model component into a tunable parameter. ...

August 25, 2025 · Last updated on August 26, 2025 · 2 min · KKKZOZ

EdgeMoE Empowering Sparse Large Language Models on Mobile Devices

Extensive Reading Author Info ‪Rongjie Yi‬ - ‪Google Scholar‬ Homepage - Liwei Guo / Assistant Professor: a tenure-track Assistant Professor at University of UESTC. Mengwei Xu Background Challenges End-to-end latency is I/O-dominated because expert weights are loaded on demand from slow storage (tail delay inflation). Quantization trilemma: compress aggressively, preserve accuracy, and keep dequantization nearly free on low-power CPUs/NPUs. Dynamic routing obscures which experts will be needed, making prefetch hard and naive caching ineffective when activations are balanced. Tiny RAM budgets (~1.5–3 GB) constrain the expert buffer, demanding careful eviction to avoid thrashing. Hardware heterogeneity and variable storage speeds complicate a one-size-fits-all pipeline and bitwidth plan. Insights Non-expert weights are held in device memory; while expert weights are held on external storage and fetched to memory only when activated. ...

August 24, 2025 · Last updated on October 4, 2025 · 2 min · KKKZOZ

HeteroLLM Accelerating Large Language Model Inference on Mobile SoCs with Heterogeneous AI Accelerators

Extensive Reading Author Info ‪Le Chen‬ - ‪Google Scholar‬ Haibo Chen [IPADS]: Director of Institute of Parallel and Distributed Systems Background 现有的LLM推理引擎通常只使用其中一种加速器(例如只用GPU或只用NPU),这导致了两个主要问题: 资源浪费:无法充分利用芯片上所有计算单元的算力。 性能瓶颈:单一加速器有其固有的性能短板,无法在所有场景下都达到最优性能。 Challenges Insights 设计一个能够同时、高效地利用 GPU 和 NPU 进行协同计算的 LLM 推理引擎,以最大限度地提升移动设备上的 LLM 推理速度 The NPU serves as the primary computing unit, handling the majority of computing tasks, while the GPU acts as a secondary computing unit to enhance the lower bound of NPU performance. GPU Characteristics Linear Performance: The GPU’s performance scales linearly as the tensor size increases. It transitions from being memory-bound on small tensors to compute-bound on large ones, where its performance plateaus. High-Cost Synchronization: There are two main types of synchronization overheads. Data Copy: API calls to transfer data between CPU and GPU buffers, like clEnqueueWriteBuffer, incur a fixed latency of about 400 microseconds, irrespective of the data’s size. Kernel Submission: Submitting a kernel to an active, non-empty GPU queue has a negligible overhead (10-20 microseconds). However, after a synchronization event empties the queue, submitting the next kernel incurs a much higher “startup” latency of 50-100 microseconds. ...

August 24, 2025 · Last updated on August 26, 2025 · 4 min · KKKZOZ

A Survey of Resource-efficient LLM and Multimodal Foundation Models

Extensive Reading Goal The goal of this survey is to provide an overarching understanding of how current approaches are tackling the resource challenges posed by large foundation models and to potentially inspire future breakthroughs in this field. ...

August 21, 2025 · Last updated on August 26, 2025 · 3 min · KKKZOZ

H2O Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models

Skimming Author Info Zhenyu “Allen” Zhang: A final-year Ph.D. student at the Electrical and Computer Engineering Department of UT Austin. Ying Sheng Insights Inherent Sparsity of Attention 推理过程中,其注意力矩阵表现出极高的稀疏性,超过95%的注意力值都非常小。这意味着在生成下一个 token 时,模型实际上只关注了过去所有词元中的一小部分。这为减少 KV Cache 的大小提供了可能性,因为大部分缓存的键值对实际上很少被用到 Existence of “Heavy Hitters” 通过分析词元在注意力计算中的累积得分,作者发现这些得分遵循 Power-law distribution, 这意味着只有一小部分词元 (Heavy Hitters) 贡献了绝大部分的注意力价值。这些 H₂ 词元对于维持模型的性能至关重要,如果将它们从缓存中移除,模型的准确率会急剧下降 Effectiveness of Local Statistics 理论上,要识别出真正的 Heavy Hitters 需要知道未来所有词元的注意力信息,这在自回归生成中是不现实的。 论文通过实验发现,仅使用局部信息——即在每个解码步骤中,根据已经生成的词元来计算和累积注意力分数——来动态确定 H₂,其效果与使用全局信息几乎一样好。 Note 既然不是所有的历史信息都同等重要,那么就可以设计一种智能的缓存管理策略,只保留那些最关键的信息,从而在有限的显存中实现高效推理。 ...

August 21, 2025 · Last updated on February 2, 2026 · 5 min · KKKZOZ

LLM as a System Service on Mobile Devices

Intensive Reading Author Info ‪Wangsong Yin‬ - ‪Google Scholar‬ Mengwei Xu Background 论文首先提出了 LLMaaS: LLM as a system service on mobile devices (LLMaaS): The mobile OS exposes an LLM and its inference infrastructure as a system feature to mobile apps, akin to the location or notification services. LLMaaS 的提出主要有以下原因: LLMaaS needs only one copy of LLM weights in memory. 不同应用程序应该去调用由系统维护的同一个大模型,而不是自己单独去加载一个 A system-level LLM can be better customized for on-device accelerator and enjoy the performance gain over commodity hardware. 在系统层面去做大模型的管理和推理更接近底层,能够更好地利用底层的硬件资源 这篇文章要解决的核心问题是 How to efficiently manage the LLM contexts ...

August 18, 2025 · Last updated on September 1, 2025 · 4 min · KKKZOZ

KV-Runahead Scalable Causal LLM Inference by Parallel Key-Value Cache Generation

Skimming Author Info Background Challenges Insights Approaches 看了好几遍都没看懂,我大概的理解是 利用了 casual mask 的特性以链式的方式在不同设备之间传递 KV,避免了传统 TSP 的大量重复计算和冗余传输 为了平衡整个流水线采用了 context-level load balancing,靠前的设备多算一些 KV, 靠后的设备少算一些,因为靠后的设备注意力计算会更长 这里的关键点是:每个设备不仅传递 KV 缓存,也要利用收到的缓存,完成自己那部分词元的注意力计算。 在 D1 上: 计算 T1-T4 的Q_0, K_0, V_0。 立刻进行自己部分的注意力计算:用 Q_0 与 K_0 计算一个 4x4 的注意力矩阵,得到输出A_0。 然后,它将 K_0, V_0(尺寸为 4 的缓存)发送给D2。 在 D2 上: 在等待 D1 数据的同时,它可以并行计算 T5-T7 的本地Q_1, K_1, V_1。 当它收到 D1 发来的 K_0, V_0 后,它将自己本地的 K_1, V_1 追加上去,形成一个包含 T1-T7 信息的、尺寸为 7 的 KV 缓存。 立刻进行自己部分的注意力计算:用自己的 Q_1(来自 T5-T7)与这个尺寸为 7 的完整缓存进行计算(一个 3x7 的注意力计算),得到输出 A_1。 然后,它将这个尺寸为 7 的 KV 缓存发送给 D3。 在 D3 上: 并行计算 T8-T9 的本地Q_2, K_2, V_2。 收到 D2 发来的尺寸为 7 的缓存后,追加自己的 K_2, V_2,形成包含全部 9 个词元信息的最终KV缓存。 它进行自己部分的注意力计算:用 Q_2 与这个尺寸为 9 的完整缓存进行计算(一个 2x9 的注意力计算),得到输出 A_2。 作为最后一个设备,它最终生成第一个令牌。 TSP ...

August 17, 2025 · Last updated on November 10, 2025 · 2 min · KKKZOZ

Ring Attention with Blockwise Transformers for Near-Infinite Context

Extensive Reading Author Info Hao Liu: A research scientist at Google DeepMind. Matei Zaharia: An associate professor at UC Berkeley (previously Stanford), where he works on computer systems and AI in the Sky Lab. Related Blogs Ring Attention Explained | Coconut Mode Background Transformer 的 核心组件“自注意力机制”的内存消耗会随着输入序列长度的增加而呈二次方增长。这导致即便是最先进的 GPU/TPU,其有限的显存(通常小于 100GB)也无法处理超长序列,例如处理百万甚至千万级别的 token. 注意力模块的显存占用分析 $B$: Batch size ...

August 17, 2025 · Last updated on August 25, 2025 · 7 min · KKKZOZ