EAGLE Speculative Sampling Requires Rethinking Feature Uncertainty

Extensive Reading Author Info Background The standard method for large language model (LLM) inference, autoregressive decoding, is slow and costly because it generates tokens sequentially, one at a time. Existing acceleration methods like speculative sampling often struggle to find a suitable draft model; using a smaller version of the LLM can have high overhead, while training a new, appropriately-sized draft model is prohibitively expensive. Other approaches like Lookahead and Medusa successfully reduce drafting latency but are ultimately limited by the low accuracy of their drafts, which restricts their maximum achievable speedup. Insights Two key insights: ...

November 10, 2025 · Last updated on November 10, 2025 · 2 min · KKKZOZ

KV-Runahead Scalable Causal LLM Inference by Parallel Key-Value Cache Generation

Skimming Author Info Background Challenges Insights Approaches 看了好几遍都没看懂,我大概的理解是 利用了 casual mask 的特性以链式的方式在不同设备之间传递 KV,避免了传统 TSP 的大量重复计算和冗余传输 为了平衡整个流水线采用了 context-level load balancing,靠前的设备多算一些 KV, 靠后的设备少算一些,因为靠后的设备注意力计算会更长 这里的关键点是:每个设备不仅传递 KV 缓存,也要利用收到的缓存,完成自己那部分词元的注意力计算。 在 D1 上: 计算 T1-T4 的Q_0, K_0, V_0。 立刻进行自己部分的注意力计算:用 Q_0 与 K_0 计算一个 4x4 的注意力矩阵,得到输出A_0。 然后,它将 K_0, V_0(尺寸为 4 的缓存)发送给D2。 在 D2 上: 在等待 D1 数据的同时,它可以并行计算 T5-T7 的本地Q_1, K_1, V_1。 当它收到 D1 发来的 K_0, V_0 后,它将自己本地的 K_1, V_1 追加上去,形成一个包含 T1-T7 信息的、尺寸为 7 的 KV 缓存。 立刻进行自己部分的注意力计算:用自己的 Q_1(来自 T5-T7)与这个尺寸为 7 的完整缓存进行计算(一个 3x7 的注意力计算),得到输出 A_1。 然后,它将这个尺寸为 7 的 KV 缓存发送给 D3。 在 D3 上: 并行计算 T8-T9 的本地Q_2, K_2, V_2。 收到 D2 发来的尺寸为 7 的缓存后,追加自己的 K_2, V_2,形成包含全部 9 个词元信息的最终KV缓存。 它进行自己部分的注意力计算:用 Q_2 与这个尺寸为 9 的完整缓存进行计算(一个 2x9 的注意力计算),得到输出 A_2。 作为最后一个设备,它最终生成第一个令牌。 TSP ...

August 17, 2025 · Last updated on November 10, 2025 · 2 min · KKKZOZ